Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 151(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38563568

ABSTRACT

In multicellular organisms, specialized tissues are generated by specific populations of stem cells through cycles of asymmetric cell divisions, where one daughter undergoes differentiation and the other maintains proliferative properties. In Arabidopsis thaliana roots, the columella - a gravity-sensing tissue that protects and defines the position of the stem cell niche - represents a typical example of a tissue whose organization is exclusively determined by the balance between proliferation and differentiation. The columella derives from a single layer of stem cells through a binary cell fate switch that is precisely controlled by multiple, independent regulatory inputs. Here, we show that the HD-Zip II transcription factors (TFs) HAT3, ATHB4 and AHTB2 redundantly regulate columella stem cell fate and patterning in the Arabidopsis root. The HD-Zip II TFs promote columella stem cell proliferation by acting as effectors of the FEZ/SMB circuit and, at the same time, by interfering with auxin signaling to counteract hormone-induced differentiation. Overall, our work shows that HD-Zip II TFs connect two opposing parallel inputs to fine-tune the balance between proliferation and differentiation in columella stem cells.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Indoleacetic Acids/metabolism , Stem Cells/metabolism , Gene Expression Regulation, Plant , Plant Roots/metabolism , Meristem/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
2.
Nat Commun ; 12(1): 4321, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262040

ABSTRACT

Symmetry establishment is a critical process in the development of multicellular organs and requires careful coordination of polarity axes while cells actively divide within tissues. Formation of the apical style in the Arabidopsis gynoecium involves a bilateral-to-radial symmetry transition, a stepwise process underpinned by the dynamic distribution of the plant morphogen auxin. Here we show that SPATULA (SPT) and the HECATE (HEC) bHLH proteins mediate the final step in the style radialisation process and synergistically control the expression of adaxial-identity genes, HOMEOBOX ARABIDOPSIS THALIANA 3 (HAT3) and ARABIDOPSIS THALIANA HOMEOBOX 4 (ATHB4). HAT3/ATHB4 module drives radialisation of the apical style by promoting basal-to-apical auxin flow and via a negative feedback mechanism that finetune auxin distribution through repression of SPT expression and cytokinin sensitivity. Thus, this work reveals the molecular basis of axes-coordination and hormonal cross-talk during the sequential steps of symmetry transition in the Arabidopsis style.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Homeodomain Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Biological Transport , Cytokinins/metabolism , Feedback, Physiological , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Indoleacetic Acids/metabolism
3.
Plant Signal Behav ; 8(9)2013 Sep.
Article in English | MEDLINE | ID: mdl-23838958

ABSTRACT

The Arabidopsis genome encodes 10 Homeodomain-Leucine Zipper (HD-Zip) II transcription factors that can be subdivided into 4 clades (α-δ). All the γ (ARABIDOPSIS THALIANA HOMEOBOX 2 [ATHB2], HOMEOBOX ARABIDOPSIS THALIANA 1 [HAT1], HAT2) and δ (HAT3, ATHB4) genes are regulated by light quality changes (Low Red [R]/Far-Red [FR]) that induce the shade avoidance response in most of the angiosperms. HD-Zip IIγ and HD-Zip IIδ transcription factors function as positive regulators of shade avoidance, and there is evidence that at least ATHB2 is directly positively regulated by the basic Helix-Loop-Helix (bHLH) proteins PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5. Recent evidence demonstrate that, in addition to their function in shade avoidance, HD-Zip IIγ and HD-Zip IIδ proteins play an essential role in plant development from embryogenesis onwards in a white light environment.


Subject(s)
Arabidopsis Proteins/metabolism , Homeodomain Proteins/metabolism , Leucine Zippers , Plant Development , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Homeodomain Proteins/genetics , Light , Plant Development/radiation effects
4.
Development ; 140(10): 2118-29, 2013 May.
Article in English | MEDLINE | ID: mdl-23578926

ABSTRACT

The Arabidopsis genome encodes ten Homeodomain-Leucine zipper (HD-Zip) II proteins. ARABIDOPSIS THALIANA HOMEOBOX 2 (ATHB2), HOMEOBOX ARABIDOPSIS THALIANA 1 (HAT1), HAT2, HAT3 and ATHB4 are regulated by changes in the red/far red light ratio that induce shade avoidance in most of the angiosperms. Here, we show that progressive loss of HAT3, ATHB4 and ATHB2 activity causes developmental defects from embryogenesis onwards in white light. Cotyledon development and number are altered in hat3 athb4 embryos, and these defects correlate with changes in auxin distribution and response. athb2 gain-of-function mutation and ATHB2 expression driven by its promoter in hat3 athb4 result in significant attenuation of phenotypes, thus demonstrating that ATHB2 is functionally redundant to HAT3 and ATHB4. In analogy to loss-of-function mutations in HD-Zip III genes, loss of HAT3 and ATHB4 results in organ polarity defects, whereas triple hat3 athb4 athb2 mutants develop one or two radialized cotyledons and lack an active shoot apical meristem (SAM). Consistent with overlapping expression pattern of HD-Zip II and HD-Zip III gene family members, bilateral symmetry and SAM defects are enhanced when hat3 athb4 is combined with mutations in PHABULOSA (PHB), PHAVOLUTA (PHV) or REVOLUTA (REV). Finally, we show that ATHB2 is part of a complex regulatory circuit directly involving both HD-Zip II and HD-Zip III proteins. Taken together, our study provides evidence that a genetic system consisting of HD-Zip II and HD-Zip III genes cooperates in establishing bilateral symmetry and patterning along the adaxial-abaxial axis in the embryo as well as in controlling SAM activity.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Meristem/physiology , Transcription Factors/metabolism , Arabidopsis/genetics , DNA-Binding Proteins/metabolism , Genes, Plant , Genome, Plant , Genotype , Green Fluorescent Proteins/metabolism , In Situ Hybridization , Indoleacetic Acids/metabolism , Leucine Zippers/genetics , Meristem/growth & development , Models, Genetic , Mutation , Phenotype , Plant Physiological Phenomena , Plant Shoots/metabolism
5.
BMC Microbiol ; 13: 27, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23384289

ABSTRACT

BACKGROUND: In Bacillus mycoides, as well as in other members of the B. cereus group, the tubulin-like protein of the division septum FtsZ is encoded by the distal gene of the cluster division and cell wall (dcw). Along the cluster the genes coding for structural proteins of the division apparatus are intermingled with those coding for enzymes of peptidoglycan biosynthesis, raising the possibility that genes with this different function might be coexpressed. Transcription of ftsZ in two model bacteria had been reported to differ: in B. subtilis, the ftsZ gene was found transcribed as a bigenic mRNA in the AZ operon; in E. coli, the transcripts of ftsZ were monogenic, expressed by specific promoters. Here we analyzed the size and the initiation sites of RNAs transcribed from ftsZ and from other cluster genes in two B. mycoides strains, DX and SIN, characterized by colonies of different chirality and density, to explore the correlation of the different morphotypes with transcription of the dcw genes. RESULTS: In both strains, during vegetative growth, the ftsZ-specific RNAs were composed mainly of ftsZ, ftsA-ftsZ and ftsQ-ftsA-ftsZ transcripts. A low number of RNA molecules included the sequences of the upstream murG and murB genes, which are involved in peptidoglycan synthesis. No cotranscription was detected between ftsZ and the downstream genes of the SpoIIG cluster. The monogenic ftsZ RNA was found in both strains, with the main initiation site located inside the ftsA coding sequence. To confirm the promoter property of the site, a B. mycoides construct carrying the ftsA region in front of the shortened ftsZ gene was inserted into the AmyE locus of B. subtilis 168. The promoter site in the ftsA region was recognized in the heterologous cellular context and expressed as in B. mycoides. CONCLUSIONS: The DX and SIN strains of B. mycoides display very similar RNA transcription specificity. The ftsZ messenger RNA can be found either as an independent transcript or expressed together with ftsA and ftsQ and, in low amounts, with genes that are specific to peptidoglycan biosynthesis.


Subject(s)
Bacillus/genetics , Bacterial Proteins/biosynthesis , Cytoskeletal Proteins/biosynthesis , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Cytoskeletal Proteins/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Molecular Sequence Data , RNA, Messenger/biosynthesis , Sequence Analysis, DNA , Transcription Initiation Site , Transcription, Genetic
6.
Arch Microbiol ; 194(10): 887-92, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22773111

ABSTRACT

Bacillus mycoides is a sporogenic Gram-positive soil bacillus of the B. cereus group. This bacillus, which forms hyphal colonies, is composed of cells connected in filaments that make up bundles and turn clock- or counterclockwise depending on the strain. A thick peptidoglycan wall gives the rod cells of these bacilli strength and shape. One approach used to study peptidoglycan neoformation in Gram positives exploits the binding properties of antibiotics such as vancomycin and ramoplanin to nascent peptidoglycan, whose localization in the cell is monitored by means of a fluorescent tag. When we treated B. mycoides strains with BODIPY-vancomycin, we found the expected accumulation of fluorescence at the midcell septa and localization along the cell sidewall in small foci distributed quite uniformly. Intense fluorescence was also observed at the poles of many cells, more clearly visible at the outer edges of the cell chains. The unusual abundance of peptidoglycan intermediates at the cell poles after cell separation suggests that the construction process of this structure is different from that of B. subtilis, in which the free poles are rarely reactive to vancomycin.


Subject(s)
Bacillus cereus/metabolism , Bacillus/metabolism , Peptidoglycan/metabolism , Cell Wall/metabolism , Staining and Labeling , Vancomycin/metabolism
7.
BMC Genomics ; 10: 279, 2009 Jun 24.
Article in English | MEDLINE | ID: mdl-19552804

ABSTRACT

BACKGROUND: Water stress during grain filling has a marked effect on grain yield, leading to a reduced endosperm cell number and thus sink capacity to accumulate dry matter. The bread wheat cultivar Chinese Spring (CS), a Chinese Spring terminal deletion line (CS_5AL-10) and the durum wheat cultivar Creso were subjected to transcriptional profiling after exposure to mild and severe drought stress at the grain filling stage to find evidences of differential stress responses associated to different wheat genome regions. RESULTS: The transcriptome analysis of Creso, CS and its deletion line revealed 8,552 non redundant probe sets with different expression levels, mainly due to the comparisons between the two species. The drought treatments modified the expression of 3,056 probe sets. Besides a set of genes showing a similar drought response in Creso and CS, cluster analysis revealed several drought response features that can be associated to the different genomic structure of Creso, CS and CS_5AL-10. Some drought-related genes were expressed at lower level (or not expressed) in Creso (which lacks the D genome) or in the CS_5AL-10 deletion line compared to CS. The chromosome location of a set of these genes was confirmed by PCR-based mapping on the D genome (or the 5AL-10 region). Many clusters were characterized by different level of expression in Creso, CS and CS_AL-10, suggesting that the different genome organization of the three genotypes may affect plant adaptation to stress. Clusters with similar expression trend were grouped and functional classified to mine the biological mean of their activation or repression. Genes involved in ABA, proline, glycine-betaine and sorbitol pathways were found up-regulated by drought stress. Furthermore, the enhanced expression of a set of transposons and retrotransposons was detected in CS_5AL-10. CONCLUSION: Bread and durum wheat genotypes were characterized by a different physiological reaction to water stress and by a substantially different molecular response. The genome organization accounted for differences in the expression level of hundreds of genes located on the D genome or controlled by regulators located on the D genome. When a genomic stress (deletion of a chromosomal region) was combined with low water availability, a molecular response based on the activation of transposons and retrotransposons was observed.


Subject(s)
Gene Expression Profiling , Genome, Plant , Triticum/genetics , Dehydration , Gene Expression Regulation, Plant , Genes, Plant , Genotype , Oligonucleotide Array Sequence Analysis , RNA, Plant/metabolism , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...